The Auto-Inhibitory Role of the EPAC Hinge Helix as Mapped by NMR
نویسندگان
چکیده
The cyclic-AMP binding domain (CBD) is the central regulatory unit of exchange proteins activated by cAMP (EPAC). The CBD maintains EPAC in a state of auto-inhibition in the absence of the allosteric effector, cAMP. When cAMP binds to the CBD such auto-inhibition is released, leading to EPAC activation. It has been shown that a key feature of such cAMP-dependent activation process is the partial destabilization of a structurally conserved hinge helix at the C-terminus of the CBD. However, the role of this helix in auto-inhibition is currently not fully understood. Here we utilize a series of progressive deletion mutants that mimic the hinge helix destabilization caused by cAMP to show that such helix is also a pivotal auto-inhibitory element of apo-EPAC. The effect of the deletion mutations on the auto-inhibitory apo/inactive vs. apo/active equilibrium was evaluated using recently developed NMR chemical shift projection and covariance analysis methods. Our results show that, even in the absence of cAMP, the C-terminal region of the hinge helix is tightly coupled to other conserved allosteric structural elements of the CBD and perturbations that destabilize the hinge helix shift the auto-inhibitory equilibrium toward the apo/active conformations. These findings explain the apparently counterintuitive observation that cAMP binds more tightly to shorter than longer EPAC constructs. These results are relevant for CBDs in general and rationalize why substrates sensitize CBD-containing systems to cAMP. Furthermore, the NMR analyses presented here are expected to be generally useful to quantitatively evaluate how mutations affect conformational equilibria.
منابع مشابه
A simple electrostatic switch important in the activation of type I protein kinase A by cyclic AMP.
Cyclic AMP activates protein kinase A by binding to an inhibitory regulatory (R) subunit and releasing inhibition of the catalytic (C) subunit. Even though crystal structures of regulatory and catalytic subunits have been solved, the precise molecular mechanism by which cyclic AMP activates the kinase remains unknown. The dynamic properties of the cAMP binding domain in the absence of cAMP or C...
متن کاملA Four Components, One-Pot Synthesis of New Imidazole Molecular Tweezers Based on 2,4,6-Triarylpyridine as Hinge Region
In the present study, some new bis-imidazole derivatives have been prepared through four-components condensation of 2,6-bis (4-aminophenyl)-4-p-tolylpyridine, benzaldehyde derivatives, benzil and ammonium acetate in presence of acetic acid. The present methodology offers several advantages such as good yields, simple procedure, milder conditions and the possibility of introducing a v...
متن کاملcAMP-dependent allostery and dynamics in Epac: an NMR view.
Epac (exchange protein directly activated by cAMP) is a critical cAMP receptor, which senses cAMP and couples the cAMP signal to the catalysis of guanine exchange in the Rap substrate. In the present paper, we review the NMR studies that we have undertaken on the CBD (cyclic-nucleotide-binding domain) of Epac1. Our NMR investigations have shown that cAMP controls distal autoinhibitory interacti...
متن کاملMapping the Ca2+ -dependent binding of an invertebrate homolog of protein phosphatase 4 regulatory subunit 2 to the small EF-hand protein, calsensin.
The EF-hand family of calcium-binding proteins regulates cellular signal transduction events via calcium-dependent interactions with target proteins. Here, we show that the COOH-terminal tail of the leech homolog of protein phosphatase 4 regulatory subunit 2 (PP4-R2) interacts with the small neuronal EF-hand calcium-binding protein, Calsensin, in a calcium-dependent manner. Using two-dimensiona...
متن کاملA Generalized Allosteric Mechanism for cis-Regulated Cyclic Nucleotide Binding Domains
Cyclic nucleotides (cAMP and cGMP) regulate multiple intracellular processes and are thus of a great general interest for molecular and structural biologists. To study the allosteric mechanism of different cyclic nucleotide binding (CNB) domains, we compared cAMP-bound and cAMP-free structures (PKA, Epac, and two ionic channels) using a new bioinformatics method: local spatial pattern alignment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012